III-UG-Math(CC)-V (NC)

2021

Full Marks - 80
Time - 3 hours
The figures in the right-hand margin indicate marks
Answer all questions

Part-I

1. Answer the following: 1×12
a) What is the Taylor's series expansion of $\sin x$?
b) What is the value of $\lim _{x \rightarrow \infty} x^{1 / x}$?
c) Define Cauchy's mean value Theorem.
d) What is the radius of convergence of $\sum x^{n}$?
e) Define Bernstelin polynomial.
f) What is the interval of convergence of

$$
\sum \frac{(x-1)^{n}}{2^{n}} ?
$$

g) If $f(x)=C$. What is the value of $\int_{a}^{b} f(x) d x$?
h) Define lower Darboux integral.
i) What is the value of $U(p, f)-L(p, f)$?
j) What is the value of $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$?
k) In which interval the series $\sum 2^{n}(\alpha)^{2 n-1}$ converges uniformity?

1) Define absolute convergence.

Part-II

2. Answer any eight of the following :
a) Examine the convergence of $\int_{0}^{1} \frac{d x}{x^{2}}$.
b) Find the value of m and n such that $\int_{0}^{1} e^{-m x} x^{n} d x$ converge $?$
c) Using $\mathrm{s}(\mathrm{f}, \mathrm{p}, \mathrm{t})$ calculate $\int_{\mathrm{a}}^{\mathrm{b}} \frac{\mathrm{dx}}{\mathrm{x}^{2}}, \mathrm{a}>0$.
d) Show that

$$
\int_{1}^{\alpha} \frac{d t}{t}=\log \alpha .
$$

e) Show that the series $\sum_{k=1}^{\infty}\left(x e^{-x}\right)^{k}$ is uniformly convergent in $[0,2]$.
f) Show that the sum function $s(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{\alpha}}$ is uniformly continuous of $[-1,1]$ for $\alpha>1$.
g) Show that
$\lim _{x \rightarrow 0} x^{x}=1$.
h) Find the local maximum and minimum of $f(x)=8 x^{5}-15 x^{4}+10 x^{2}$.
i) Verify Lagrange mean value condition for $f(x)=x^{2}+2 x+3$ on $[4,6]$.
j) Show that $f_{n}(x)=\frac{n x+x^{2}}{n^{2}}$ converges pointwise.

[4]

Part-III

3. Answer any eight of the following :
a) Show that $1-1 / 2 x^{2} \leq \cos x$.
b) Use Taylor's theorem with $\mathrm{n}=2$ to approximate $\sqrt[3]{1+x}, x>-1$.
c) Show that $f(x)=\sin x, x \in[0, \pi / 4]$ is approximated by a polynomial $p(x)=x-\frac{x^{3}}{6}$ with an error less than $\frac{1}{400}$.
d) Show that for $-1<x \leq 1$

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots .+(-1)^{n-1} \frac{x^{n}}{n}
$$

in particular $\log 2=1-1 / 2+1 / 3-1 / 4+\ldots \ldots \ldots$
e) Show that for every

$$
\begin{aligned}
& x \in R, \sum_{k=0}^{n}(n x-k)^{2}\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =n x(1-x) \leq \frac{n}{4} .
\end{aligned}
$$

f) If $h(x)=x$ for $x \in[0,1]$ show that $h \in R[0,1]$.
g) Show that $\int_{0}^{t} \sin x d x=1-\cos t$.
h) Show that $\int_{0}^{\pi / 2} \frac{\sin ^{m} x}{x^{n}} d x$ exists if and only if $\mathrm{n}<\mathrm{m}+1$.
i) Examine the converage of $\int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{\sin h x}\right) \frac{d x}{x}$
j) If f is integrable on $[a, b]$ show that f^{2} is also integrable on $[a, b]$.

Part-IV

4. a) Define Maclaurin's series expansion. Show that for $|x|<1, \alpha \in R$

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\ldots
$$

where

$$
\binom{\alpha}{0}=1,\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}, k \in N . \quad 7
$$

OR
b) Let $\mathrm{f}: \mathrm{I} \rightarrow \mathrm{R}$ be twice continuously differentiable on I. The $f^{\prime \prime}$ is continuous on I. Let $f^{\prime}(c)=0$ for some $c \in I$. Then show that f has
i) Local maximum at C if $\mathrm{f}^{\prime \prime}(\mathrm{c})<0$.
ii) Local minimum at C if $f^{\prime \prime}(c)>0$. Prove that the largest rectangle inscribed in a circle is a square.
5. a) Let $f \in B[a, b]$ be continuous over $[a, b]$ except over a finite set. Then show that f is also integrable over $[\mathrm{a}, \mathrm{b}]$.

OR

b) Let $f \in R[a, b]$ then show that $|f| \in R[a, b]$.

$$
\text { Again }\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

6. a) Show that $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ exist if and only if m, n are both positive.

$$
[7]
$$

b) Discuss the convergence of $\int_{0}^{1} \log \sqrt{x} d x$ and hence evaluate it.
7. a) State the prove Abel's limit theorem. 7 OR
b) State and prove Weierstrass approximation theorem.

2021

Full Marks - 80
Time - 3 hours
The figures in the right-hand margin indicate marks Answer all questions

Part-I

1. Answer the following:
a) What are the generators of z under ordinary addition?
b) What is the order of A_{n} for $n>1$?
c) If $\mathrm{n}=6$, what is the value of $\phi(\mathrm{n})$?
d) What is the identity element of Z_{n} under addition Mod n ?
e) What is the order of a group of integers under addition?
f) In Z , what is the value of $\langle 1\rangle$?
g) How many elements of order 5 are in $Z_{25} \oplus Z_{5}$?
h) Write down the value of $\left|\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots \mathrm{~g}_{\mathrm{n}}\right)\right|$
i) What is the value of k , if $20^{6} \equiv \mathrm{k}(\bmod 7)$?
j) What is the Kernel of $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$?

[2]

k) In group Q of all quaterions which quaternior form the center of Q ?

1) Define $C\left(R_{90}\right)$ in D_{4}.

Part-II

2. Answer any eight of the following : 2×8
a) Explain why the set of integers under multiplication is not a group ?
b) What is the Caley table for $U(10)$?
c) Show that for group elements a and b

$$
(a b)^{-1}=b^{-1} a^{-1} .
$$

d) Show that 3 is a generator of Z_{8}.
e) Decompose $(1,3,2,4)$. ($1,7,6,2)$ into transposition.
f) Let $\mathrm{G}=\mathrm{Z}_{9}$ and $\mathrm{H}=\{0,3,6\}$. List down the left cosets of H in G ?
g) List down the elements of $\mathrm{U}(8) \oplus \mathrm{U}(10)$.
h) Find whether $\phi(x)=x^{2}$ from $R(t)$ to itself is a homomorphism or not?
i) If $|\mathrm{H}|=\mathrm{n}$, Show that $|\phi(\mathrm{H})|$ devides?
j) If $h\left(g_{1}\right)=h\left(g_{2}\right)$ prove that $g_{1}=g_{2}$.

Part-III

3. Answer any eight of the following
a) Show that $(\mathrm{Z} / \mathrm{N}) \approx \mathrm{Z}_{\mathrm{N}}$.
b) For $\phi: Z_{12} \rightarrow Z_{12}$ verify that $\phi(x)=3 x$ is a homomorphism. Find $\operatorname{ker}(\phi)$?
c) Let $\phi: \mathrm{G} \rightarrow \mathrm{G}$ is a homomorphism and $\mathrm{g} \in \mathrm{G}$. Prove that if $\phi(\mathrm{g})=\mathrm{g}^{\prime}$ then
$\phi^{-1}\left(g^{1}\right)=\left\{x \in G \mid \phi(x)=g^{1}\right\}=\mathrm{g}$ ker f.
d) Using a example show that the converse of Lagrange's theorem is false.
e) Show that A_{4} has no subgroup of order 6 .
f) Prove that a group of order 5 must be cyclic.
g) Show that the symmetric group S_{3} under composition is non abelian.
h) Prove that for $\mathrm{n} \geq 3$ the subgroup generated by 3-cycle is A_{n}.
i) Construct a Caley table for D_{4}.
j) if G ia an abelian group under multiplication show that $H=\left\{x^{2} \mid x \in G\right\}$ is subgroup of G.

Part-IV

4. a) With pictures and words describe each symmetry in D_{3}. Show that D_{3} is a non-abelian group. 7

OR
b) Prove that for each $\mathrm{a} \in \mathrm{G}, \mathrm{C}(\mathrm{a})$ is a subgroup of G .
5. a) Prove that in a finite group the number of elements of order d is divisible by $\phi(\mathrm{d})$. Find $\phi(40)$ and $\phi(75)$.

OR
b) Prove that every permutation can be written as a cycle or as a product of disjoint cycles.
6. a) State and prove Lagrange's theorem. 7 OR
b) Let G and H be finite cyclic group. Then prove that $\mathrm{G} \oplus \mathrm{H}$ is cyclic if and only if $|\mathrm{G}|$ and $|\mathrm{H}|$ are relatively prime.
7. a) State and prove N / C theorem. Show that every group of order 77 is cyclic.

OR
b) State and prove first isomorphism theorem. Find all homomorphism from Z_{12} to Z_{30}.

III-UG-Math-(CC)-VII (NC)

2021
Full Marks - 60
Time - 3 hours

The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following :
a) What is the characteristic equation of $f(x, y, u)$ in nonparametric form?
b) What is the tangent vector to the parametric curve $x(t), y(t), u(t)$?
c) Write down the one dimensional wave equation.
d) What is the canonical form of a hyperbolic equation.
e) For positive $\mathrm{k}=\mathrm{p}^{2}$ what is the general solution of $x^{\prime \prime}-\mathrm{kx}=0$?
f) What is the eigen function of the vibrating string ?
g) Give an example of a normal differential equation in Z.
h) For $x=e^{2 t}$, what is the value of $(D-2)^{2} x$?

Part-III

2. Answer any eight of the following : $11 / 2 \times 8$
a) Write down the general form of semilinear partial differential equation.
b) Define characteristic base curve.
c) Eliminate the arbitrary function from

$$
z=x+y+f(x y)
$$

d) Determine the region in which $x u_{x x}+u_{y y}=x^{2}$ is elliptic.
e) Classify the curve $u_{x x}+y u_{y y}-x u_{y}+y=0$.
f) Define domain of influence.
g) When the initial displacement of a wave is zero what is the d' Alembert Solution.
h) Verify the linear independence of

$$
\begin{gathered}
x=e^{5 t} \quad x=e^{3 t} \\
\text { and }
\end{gathered}
$$

$$
y=-3 e^{5 t} \quad y=-e^{3 t}
$$

i) What is the general solution of

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{f}_{1}(\mathrm{t}) & \mathrm{x}=\mathrm{f}_{2}(\mathrm{t}) \\
\mathrm{y}=\mathrm{g}_{1}(\mathrm{t}) & \mathrm{y}=\mathrm{g}_{2}(\mathrm{t})
\end{array}
$$

j) Find the characteristics of $u_{x y}+u_{x}+u_{y}=3 x$

Part-III

3. Answer any eight of the following : 2×8
a) Solve the initial value problem
$u_{t}+u u_{x}=x$
$u(x, 0)=f(x)$ where $f(x)=1$
b) Show that the family of spheres
$x^{2}+y^{2}+(z-c)^{2}=r^{2}$ satisfies the first order linear differential equation $y p-x q=0$
c) Find the solution of
$u(x+y) u_{x}+u(x-y) u_{y}=x^{2}+y^{2}$ with cauchy data $u=0$ on $y=2 x$.

$$
[4]
$$

d) Fine the cononical form of

$$
u_{x x}+(2 \operatorname{cosec} y) u_{x y}+\left(\operatorname{cosec}^{2} y\right) u_{y y}=0
$$

e) Determine the general solution of

$$
u_{x x}+10 u_{x y}+9 u_{y y}=y
$$

f) Determine the solution of the initial value problem $u_{t t}-C^{2} u_{x x}=0 u(x, 0)=x^{3}, u_{t}(x, 0)=x$
g) Determine the solution of

$$
\begin{aligned}
& u_{t t}=4 u_{x x}, \quad x>0, \quad t>0 \\
& u(x, 0)=|\sin x|, \quad x>0 \\
& u_{t}(x, 0)=0, \quad x \geq 0 \\
& u(x, 0)=0, \quad t \geq 0 \text { for } x>2 t .
\end{aligned}
$$

h) What is the solution of

$$
\begin{gathered}
x=e^{5 t} \quad x=e^{3 t} \\
\text { and }
\end{gathered}
$$

$$
y=-3 e^{5 t} \quad y=-e^{3 t}
$$

i) Solve $\left(D^{2}-2 D+1\right) y=e^{-x}$
j) Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+4 y=0$

[5]

Part-IV

4. a) Show that the general solution of the linear equation

$$
\begin{aligned}
& (y-z) u_{x}+(z-x) u_{y}+(x-y) u_{z}=0 \text { is } \\
& u(x, y, z)=f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

OR

b) Find the integral surface of $u_{x}+u_{y}=1$ So that the curve passes through an initial curve represented parametrically $x=x_{0}(s), y=y_{0}(s)$, $\mathrm{u}=\mathrm{u}_{0}(\mathrm{~s})$ where S is a parameter.
5. a) Consider the wave equation $u_{t t}-c^{2} u_{x x}=0$ where c is a constant. Find the general solution. 6

OR

b) Use $u=f(\xi), \xi=\frac{x}{\sqrt{4 k t}}$ to solve the parabolic system $u_{t}=k u_{x x}-\infty<x<\infty, t>0$.
$u(x, 0)=0, \quad x<0$
$u(x, 0)=u_{0}, x>0$
6. a) Find out d'Alembert solution of

$$
\begin{align*}
& u_{t t}=C^{2} u_{x x}, \quad 0<x<\infty, \quad t>0 \\
& u(x, 0)=f(x), \quad 0 \leq x<\infty \\
& u_{t}(x, 0)=g(x), \quad 0 \leq x<\infty \\
& u_{x}(0, t)=0, \quad 0 \leq t<\infty \tag{6}
\end{align*}
$$

OR
b) Solve the Cauchy problem for the nonhomogeneous equation

$$
u_{t t}=C^{2} u_{x x}+h^{*}(x, t)
$$

with initial condition

$$
u(x, 0)=f(x), u_{t}(x, 0)=g^{*}(x)
$$

7. a) Use operator method of solve

$$
2 \frac{d x}{d t}-2 \frac{d y}{d t}-3 x=t
$$

and $2 \frac{d x}{d t}+2 \frac{d y}{d t}+3 x+8 y=2$

OR

$$
[7]
$$

b) Solve $\frac{d x}{d t}=6 x-3 y$

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=2 x+y
$$

III-UG-Math-(GE-B)-I (NC)

2021

Full Marks - 80
Time - 3 hours
The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following :
a) What is the radius of curvature of a polar curve $\mathrm{r}=\mathrm{f}(\theta)$?
b) Define enveloping cylinder.
c) Define great circle.
d) What is the Maclaurin series expansion of $\log (1+x) ?$
e) Give an example of monotonically decreasing function.
f) Define Rolle's theorem.
(1) What is the domain of $f(x, y)=\sqrt{\frac{x+y}{x-y}}$.
h) State the necessary condition for differentiability of a function $f(x, y)$ at (a, b).
i) Write the condition for which $f_{y x}=f_{x y}$ for the function $f(x, y)$.
j) What is the order and degree of $x^{2} y^{\prime \prime \prime}-\sqrt{x y}=0$.
k) What is the value of $\frac{1}{\mathrm{D}^{2}+\mathrm{a}^{2}} \sin a x$.
1) What is the value of $\frac{1}{F(D)}\left[e^{a x} v(x)\right]$.

Part-II

2. Answer any eight of the following : 2×8
a) Identify the surface $36 x^{2}+9 y^{2}+4 z^{2}=36$ and their intersection with the principal plane.
b) Find the asymptote parallel to co-ordinate axes $x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)=0$.
c) Find the radius of curvature of $S=a \psi$.
d) Verify Rolle's theorem for $\frac{\sin x}{e^{x}}$ in $[0, \pi]$.
e) Determine $\lim \left\{\frac{1}{x-2}-\frac{1}{\log (x-1)}\right\}$ as $x \rightarrow 2$.
f) Determine $\lim (\cos x)^{1 / x^{2}}$ as $x \rightarrow 0$.
g) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}$ does n't exist.
h) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=3 a x y$.
i) Solve $x \frac{d y}{d x}=\sqrt{1-y^{2}}$.
j) Find the general solution of

$$
y^{\text {iv }}-4 y^{\text {III }}+8 y^{\text {II }}-8 y^{I}+4 y=0
$$

Part-III

3. Answer any eight of the following :

a) Prove that the radius of curvature of $(-2 a, 2 a)$ on the curve

$$
x^{2} y=a\left(x^{2}+y^{2}\right) \text { is }-2 a
$$

b) Find the area lying about x-axis and included between $x^{2}+y^{2}=2 a x$ and parabola $y^{2}=a x$.
c) Rectify the curve

$$
x=a(\theta+\sin \theta) y=a(1-\cos \theta)
$$

d) Derive Maclaurin series expansion of $\cos x$.
e) Find $\lim \frac{1+\sin x-\cos x+\log (1-x)}{x \tan ^{2} x}$ as $x \rightarrow 0$
f) Find the centroid of a right angular cone of base radius r and height h with uniform density 1 .
g) Evaluate $\iint_{R}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right) d x d y$ over the first quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
h) Solve $x y p^{2}+p\left(3 x^{2}-2 y^{2}\right)-6 x y=0$
i) Solve yy' $=x^{3}+y^{2}, y(2)=-6$.
j) Show that if Z^{x} is a homogeneous function of x and y of degree n, then
$\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)^{2} z=n(n-1) z$.

Part-IV

4. a) The normal at any point P of the central conicoid $a x^{2}+b y^{2}+c z^{2}=1$ meets the three principal planes at $\mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3}.
Show that $\mathrm{PG}_{1}: \mathrm{PG}_{2}: \mathrm{PG}_{3}:: \mathrm{a}^{-1}: \mathrm{b}^{-1}: \mathrm{c}^{-1} .7$

OR

b) Find the enveloping cylinder of the surface
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and the equation of whose generators are $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

[6]

5. a) State and prove Cauchy Mean Value Theorem. Verify the theorem for

$$
x^{2} \in[a, b] a>0, b>0 .
$$

OR

b) Obain the Maclaurin's theorem the first four terms of $\mathrm{e}^{\mathrm{x} \cos \mathrm{x}}$ in ascending powers of x . Show that $\lim _{x \rightarrow 0} \frac{e^{x}-e^{x \cos x}}{x-\sin x}=3$.
6. a) Find the maximum value of the function $f(x, y, z)=\frac{5 x y z}{x+2 y+4 z}$ such that the condition

$$
x y z=8 .
$$

OR
b) If $f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$
show that $\mathrm{f}_{\mathrm{xy}}(0,0) \neq \mathrm{fyx}(0,0)$.

[7]

7. a) Solve $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x+\cos 3 x$. 7 OR
b) Solve tha initial value problem

$$
\begin{aligned}
& \frac{d y}{d x}+y=f(x) \text { when } \\
& f(x)= \begin{cases}2, & 0 \leq x<1, \\
0, & x \geq 1\end{cases}
\end{aligned}
$$

$\square \square$

